
QDesign Music
A quick analysis

by

Benjamin Larsson

e-mail:

banan@student.luth.se

Version 1.2

14th January 2004

Contents

1 Abstract 3

2 Introduction 3

3 Test of QDM2 3

4 Assumptions 3

5 Facts 7
5.1 General . 7
5.2 Blocktable . 7
5.3 Packet table . 7
5.4 Bitstream . 7

5.4.1 Checksum calculation routine 8
5.4.2 Structure decoding . 9
5.4.3 Bitstream terminator . 9

5.5 Sound resynthesis . 9
5.6 Decoding procedure . 9

6 Further Progress 10

7 Comments 10

8 Version History 10

9 References 10

10 Hexdump of packets 10
10.1 11025 Hz 24 kbit mono white noise 11
10.2 11025 Hz 24 kbit mono silence 11

2

1 Abstract

This is an initial analysis of QDesigns audiocodecs QDMC and QDM2 (QDM
aka QDesign Music). The goal is to eventually understand the structure of the
codecs and finally be able to decode it.

2 Introduction

QDMC is an audio compression-codec from QDesign. It is mainly used in Quick-
time [2] from Apple. So far very little is(was) known about this codec. It seams
to originally come from Dmitry Shmunk’s LB codec. (Low bitrate codec). He
was abit active on usenet 96-97, he made the LBpack/LBplay media player.
From the history in one of the version of his mediaplayer [4], there is a note of
using a Radix-4 FFT implementaion in the player. No other useful information
could be found about the technique used for the codec. The only other source
of information seams to be from QDesign themself from their pressreleases [1].
The only valuable information from those is that QDMC is a perceptual co-
dec. That indicating a propritary psycoacoustics implementation. Although
the pressrelease for QDMC says it is fundamentally different from anything else
available at the time (98), one could suspect that this fundamentally difference
is in one of the steps of a sub-band codec. And not some other form of approach
of compression.

This document will mostly describe QDM2 because the MVP [5] program
from QDesign could only encode in that format. Most work is done with 24kbit
mono files and that might affect sertain assumptions and facts.

3 Test of QDM2

Testing was done with chirps. The chirp was created with matlab and nor-
malized with a 0.8 factor. A sweep from 0 to 22.05 khz (figure 1) showed
that somthing happened around 8kHz. A powerspectrum plot (figure 2) re-
vealed that most of the higher (> 8kHz) frequencys are not there. And some
strange pattern is repeted 3 times after the drop. If you compare figure 2 with
figure 3 striking similarities are found, figure 3 is a powerspectrum plot of a
µlaw-converted version of the chirp wavform. The µlaw-conversion is basicly a
logaritmic quantization reducing the amount of bits per sample from 16 to 8.
This strongly indicates a use of a logaritmic pcm step in the codec.

A chirp test with a higher normalization factor (> 0.9) gave the results shown
in figure 4. 6 visible overtones can be found, this indicates some sort of numerical
stability, maybe some overflow/rounding error in the encoder. Though some
litte trace can be found in figure 2, a close look reveal two lines forming a X.

4 Assumptions

Right now I’m guessing this is a sub-band codec with many conceptual similarit-
ies with Layer 2 and 3 of the Mpeg audio codecs. Some use of VLC/RLE/Huffman.
Maybe even VQ. IDCT used to resynthesis the sound. QDM2 is the same co-

3

Time

Fr
eq

ue
nc

y
QDMC2 sweep 0−22050, fs=44100

0 1 2 3 4 5 6 7 8 9

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Simple frequencysweep

dec as QDMC but maybe some small changes in the bitstream or the steps to
code/decode.

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

QDMC2 0−22050 Hz

Figure 2: Powerspectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

0−22050HzSweep.au.wav

Figure 3: Powerspectrum

5

Figure 4: Frequency sweep with overtones

6

5 Facts

5.1 General

QDM2 resides in a mov container. The container has information about the
samplingfrequency and mono/stereo. The codec is a CBR codec.

5.2 Blocktable

The codec works in even blocks and blocksize depends on the samplingfrequency.
A block consists of 16bit PCM sampledata. The data that is compressed is
simply divided in an even amount of peices.

Samplingfrequency (Hz) Blocksize (bytes)
8000 1024
11025 1024
16000 2048
22050 2048
24000 2048
32000 4096
44100 4096
48000 4096

Table 1: QDM2 blocksize-table.

Zeropadding is used to fill an even number of blocks.

5.3 Packet table

A compressed block forms a packet accoarding to table 2.

Bitrate (kbits) Packetsize (bytes)
28 278
48 556
64 742
112 1300
128 1486

Table 2: QDMC2 packet-table.

Mono and stereo data seams to have the same packetsize, this indicating some
form of joint-stereo compression.

5.4 Bitstream

A packet is assumed to have a X bytes long header and after that the compressed
data. The following has been able to be figured out by looking at hexdumps
of the compressed packets. (Table 3.) Table 3 shows the common difference
found between files of different bitrate. And by taking the 2nd and 3rd byte

7

and converting it to deciamals, table 4 appears. The numbers in that table is
the exact lenght of a packet - 3 bytes. My guess is that the decoder uses this
value to know how many more bytes it need to read. With all this information
the following headertable is formed. (Table 5)

5.4.1 Checksum calculation routine

Checksum is calculated the following way. Summerize every value in a packet,
except byte 4 and byte 5. And the result so the length is a 16bit number. Store
the 16bit value divided in byte 4 and byte 5. The following code will calculate
the checksum (the packet is represented as a 278 long vector with 8 bits unsigned
numbers):

Matlab:
checksum = dec2hex(uint16(sum(packetvector(1:128))-sum(packetvector(4:5)))

Pseudo C (I’m no C programmer):

pbyte4 = packet[byte4];
pbyte5 = packet[byte5];

sum = sum(packet);
summinus = sum - (pbyte4 + pbyte5);
checksum = summinus && 0x0000FFFF;

The result checksum should be byte 4 and byte 5. The order is swapped in
QDMC and QDM2.

1 2 3 4 5 6 bitrate (kbit)
82 01 13 XX XX 09 24
82 02 29 XX XX 09 48
82 02 E3 XX XX 09 64
82 05 11 XX XX 09 112
82 05 CB XX XX 09 128

Table 3: QDM2 bitstream-table, the first 6 bytes.

hex dec
0113 275
0229 553
02E3 739
0511 1297
05CB 1483

Table 4: Hexadecimal to decimal

8

Byte number in header Description
1 Identifier, seams to always be 0x82
2,3 Amount of bytes before the packet ends (in hex)
4,5 Checksum value
6 Unknown structure Id value, always seams to be 0x09
7 Lenght of structure
8 Unknown, sometimes it is the same through a whole packet

Table 5: QDM2 headertable.

Samplerate may not be included in the bitstream, I found 24kbit packets
with same content (zeros) but from different samplingfrequencys. Indicating
that the bitstream does not have any samplingfrequency information. That
information can be red from the movcontainer.

5.4.2 Structure decoding

Inside a QDM2 packet there are some structures. Those structures has an id
and a length. The procedure to get out all id’s and lengths is as follows:

set locationpointer to offset of byte 6
Do
save the idvalue (&locationpointer)
save the lengthvalue (&locationpointer + 1)
set locationpointer to locationpointer + lengthvalue +2
Repeat

If the idvalue and lenghtvalue is 0 then break the loop.

5.4.3 Bitstream terminator

Bitstreams seams to need 2 NULL bytes to end a packet. Maybe needed for
breaking structure calculation.

5.5 Sound resynthesis

The resynthesis from the spatial domain to the temporal domain is done by an
iDCT [6]. The iDCT is working with chunks of 64bytes. For 1 packet there are
8 chunks. 8 · 64 = 512, 512 bytes gets 1024 bytes after µlaw-conversion.

5.6 Decoding procedure

Steps included in the decoding of a QDM2 packet.

• Check checksum

• Decode structures

• Magic (bit shaving, rle, vlc, huffman, etc..)

• iDCT

9

• µlaw to 16-bit pcm

6 Further Progress

More progress can probably be made by looking at hexdumps of packets but
most likely dissassembly is a faster way. Proposed way is to make a short movfile
with one packet, and then trace what is happening with a debugger. The first
step should be some form of unpacking with huffman tables or not.

Under linux the approach with mplayer [3] and gdb would be taken. With
mplayer it would be easy to know where in memory the packet is and when
access to that memory occurs.

7 Comments

This document is a work in progress and will be updated if/when new inform-
ation occurs. Most information should be correct but non is guaranteed. If
anybody want to help with information just mail it.

8 Version History

1.0 Initial version
1.1 Added checksum calculation algorithm, fixed tyupos and more references
1.2 Added iDCT and structure information

9 References

References

[1] http://www.qdesign.com/news/archives/01 06 98.htm

[2] http://www.apple.com/quicktime

[3] http://www.mplayerhq.hu

[4] ftp://ftp.simtel.net/pub/simtelnet/msdos/sound/lbit157.zip

[5] http://www.rjamorim.com/rrw/qdmc.html

[6] http://sourceforge.net/mailarchive/forum.php?thread id=3565396&forum id=9050

10 Hexdump of packets

Just for reference 2 hexdumps are included. Hexcat is used. And by looking at
the amount of zeros in the packet of silence it makes sence that a packet with
no information is easy to compress. Numbers between [] are strucure positions.

10

10.1 11025 Hz 24 kbit mono white noise

00000000 - 82 01 13 66 37[09 21]7c 13 6b 42 02 be 89 0b b8
00000010 - 09 f8 66 06 12 44 e2 9b d8 73 18 88 6f 62 23 38
00000020 - f2 cd 6b 7a f1 01 0d 05 [0d 05]53 55 59 16 00[26
00000030 - 01]16[25 1f] 05 1a c8 08 bc fc 2c 49 57 8a 94 0a
00000040 - ba c5 1a 1d e9 48 5c e9 1b 07 85 14 f5 b2 29 1c
00000050 - 09 91 15[24 42]09 3a a6 8c 65 26 dc 14 11 1f 38
00000060 - 65 64 b8 ac ab 7d a4 b8 0c a2 00 17 2d 0e 66 3f
00000070 - 82 14 c6 49 0c 0a 98 4c 8b 48 c5 80 2b a6 69 c8
00000080 - 2a a8 12 69 82 09 2a 16 a0 05 0f 88 88 52 11 a6
00000090 - 2b 9b 48 2a 20 e9 01[23 5b]0d e3 2e ee 70 49 60
000000a0 - 40 51 62 97 63 f0 35 88 0a 47 66 20 96 60 04 61
000000b0 - 83 c8 25 44 64 50 2a 20 58 29 23 40 05 57 d8 10
000000c0 - d9 54 c2 13 e4 30 46 02 54 82 af 33 13 42 5c e4
000000d0 - 51 42 88 44 2e 61 62 1d 82 1a 40 08 51 30 04 13
000000e0 - 0b 22 93 62 93 7b cc 60 19 09 a0 13 88 94 08 22
000000f0 - b8 a6 31 0a [22 1e]b5 92 f0 cd ca 52 d7 5a eb df
00000100 - 6e c9 b0 a6 b5 0a 96 15 2f 27 a4 84 e7 f5 ca ae
00000110 - 94 d5 fa 01 [00 00]

10.2 11025 Hz 24 kbit mono silence

00000000 - 82 01 13 0c da[09 13]cc 2f 93 f9 65 32 bf 4c e6
00000010 - 97 c9 fc 32 99 5f 26 f3 cb 04[0d 05] 00 00 00 00
00000020 - 00[26 01]16 [25 01]55[24 01]55[23 01] 20[22 01]00
00000030 -[00 00]00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000040 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000070 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000080 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000090 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000a0 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000b0 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000c0 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000d0 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000e0 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000f0 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000100 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000110 - 00 00 00 00 00 00

11

