

Listening Test
Conduction Handbook

Roberto Amorim, PITA

May 2005

Version 0.3 – December 2006

Summary

Acknowledgements ... 3
Introduction ... 4
The ABC/hr test methodology.. 5
Steps to conduct a successful listening test .. 7

Test discussion... 8
Preparing the sample packages .. 9
Creating the config files and finishing packaging ... 11
Starting the test .. 13
Preparing the results ... 14
Making Plots ... 16
Finishing at Last ... 17

Opening the Cans of Worms.. 18
High bitrate testing... 19
VBR versus CBR ... 20
Dealing with ranked references ... 22
Hints ... 23
Annex 1: Model test readme .. 24

 2

Acknowledgements

I have lots of people to thank for all the experience and
knowledge I gathered while conducting listening tests from mid-
2003 to mid-2004.

First and foremost, Mr. Darryl Miyaguchi (ff123). If it wasn’t
for him, I wouldn’t have even started conducting tests. He was
always there to provide support and guidance whenever a
particularly tricky issue surfaced. He also helped me a lot fending
off clueless critics and debating with clued-in ones. He’s also a
very smart guy and a great friend.

Then, the people that helped me with valuable criticism and

comments: Juha Laaksonheimo (JohnV), Gian-Carlo Pascutto
(Garf), Francis Niechcial (Guruboolez), Darin Morrison (Dibrom),
[proxima], tigre and so many others. They helped me make my
tests much better and more trustworthy.

Also, the people that supported me with software they

developed and hosting of samples: Darryl Miyaguchi, Thomas
Schumm (Phong), Benno K. (schnofler), Paul Harris (verloren),
Menno Bakker, Darin Morrison and spoon.

Darryl Miyaguchi, Thomas Schumm and Jason Anthony

were extremely helpful proof-reading this document.

Last but not least, the listening test participants. They

contributed their time and hearing to make my tests meaningful
and informative.

To all of you, my heartfelt thanks.

Curitiba, May 2005

 3

Introduction

Blind tests were created as a method to test a product where the tester’s

psychology could influence the test results. Such a phenomenon is often called
“placebo effect”. The name comes from medication effectiveness tests
(probably the field where blind tests are most widely used), and refers to test
participants that display changes in their condition even though they were taking
the placebo – usually tablets containing only sugar or flour. In that case,
psychology alone is affecting their reaction to the placebo.

A similar phenomenon can happen when the test depends on the

auditory system. Subjectivists (people that prefer to rely on subjective opinions)
want to believe some piece of audio hardware sounds better than another just
because it costs 20 times more (a claim quickly dismissed by objectivists as
placebo or “snake oil” until objective proof is produced).

The battle between subjectivists and objectivists is an endless one, and

has seen some of its highest points at the rec.audio.opinion Usenet newsgroup.
At times, the threads there become ablaze in vitriolic rage as holy wars between
the two rival groups take place.

To counter the claims of the subjectivists, the objectivists created a

method called ABX to reliably compare two audio signals. In this test, the
person taking the test sits in front of a testing device connected to the signal
sources A and B. The test consists of several trials, and in each one the signal
from one of the sources is routed to the loudspeaker and the other signal is
muted. Sources are picked randomly at each trial. If the participant can’t
consistently differentiate source A from source B, the signals are considered to
sound the same to that person and any claim about superior quality in one
device is considered to be a result of the placebo effect.

Besides countering placebo, this methodology also is effective against

bias. For instance, it’s likely that a die-hard Free Software enthusiast will claim
Vorbis is better than WMA, no matter in what situation. In a blind environment,
he won’t be able to let that prejudice influence his test results.

In the late nineties, the International Telecommunications Union (ITU)

created a method to compare several audio sources at once with attention to
relative quality among sources, and not only the ability to detect differences
among them. That method is called ABC/hr, and is the core of audio codec
listening tests.

 4

The ABC/hr test methodology

The International Telecommunications Union created the ABC/hr

(ABC/hidden reference) methodology as a solution to test their own
telecommunication codecs easily and reliably while avoiding interferences
related to placebo. It is officially called “Methods For The Subjective
Assessment Of Small Impairments In Audio Systems Including Multichannel
Sound Systems” and is referenced as document ITU-R BS.1116-11.

Here is how a test is assembled:

Fig. 1: Example of a test going on in ABC/hr for Java

1. The test conductor prepares the samples beforehand by encoding them with
the encoders being tested and decoding said samples back to .wav

2. The samples and the uncompressed reference are loaded into the comparer
program. Advanced ABC/hr comparers like ABC/hr for Java can
automatically detect and correct offset and gain differences among samples

3. The program randomizes the order of the samples to be compared so that
it’s pretty much impossible to know what sample is being tested at a given
time. It then creates sliders for each sample. The sliders come in left-right
pairs. One of them is the uncompressed reference and the other is the

1 http://www.itu.int/rec/R-REC-BS.1116-1-199710-I/e

 5

sample to be tested. The position of the reference and the sample is also
randomized

4. The test starts. By clicking the play button under a slider, the test participant
listens to the stream represented by that slider. Clicking the “Ref” play
button, he/she can listen to the reference in that test without being told which
slider is actually the reference

5. The bar at the bottom is used to select a range of audio data that the
participant deems particularly interesting for that test. When a range is
selected, the other parts of the sample aren't played.

6. Once he/she has listened to the samples, the listener moves the sliders
he/she believes to be the samples attributing scores to the feature being
tested (usually absolute quality). He/she can click the notepad on top of the
moved slider to comment on that sample

7. Having finished the test, the listener saves his/her results and reads them, or
sends them to the test administrator in case they were encrypted to avoid
tampering.

One of the biggest strengths of this test is the fact that the reference is

hidden next to the sample. That way, clowns that took the test and just moved
sliders randomly will have a big chance of being caught for ranking the samples
several times. Of course, not all people ranking references are necessarily
trying to mess your test, or deaf, as will be discussed later on.

The ABC/hr method can be used to test not only audio codecs, but also

video codecs, audio hardware, and several other products. This document will
focus on audio codec tests alone, since audio hardware tests are very difficult to
set up properly and the software tools to set up an audio codec test are easily
available, which doesn’t apply to video codec testing.

So you got sold and want to conduct your very own public listening test,

but you have doubts how to proceed?
I’m here to help.

 6

Steps to conduct a
successful listening test

In this section, I’ll try to guide you in the steps to conduct a listening test,

from the early discussion to the publication of the results.

First and foremost, find a place to discuss your test. You should be open

to accept criticism and suggestions, otherwise people won’t be very interested
in your test.

Probably the most friendly place to conduct such discussion is the

Hydrogenaudio forum (http://www.hydrogenaudio.org), with what is probably the
largest population of objectivists on the Internet, and an eventual subjectivist
that serves as laughing stock.

 7

http://www.hydrogenaudio.org/

Test discussion

Once you settle with a forum, start the discussion explaining your plans:

what codecs you plan to test, at what bitrate (bits per second, AKA kbps), using
which settings.

You can start the discussion with a collection of samples in mind (in that

case list them when you start talking about your test since they should be open
to discussion as well) or you can ask other forum members for suggestions on
good samples.

A good amount of samples varies between 12 (less than that, and your

final results won’t be statistically significant) and 18 (more than that, and your
participants will be too spread among the samples). If you are very sure you’ll
have lots of participants (will hardly happen), you can go over 20 samples. The
more samples you use, the most statistically significant the final score will be.

Still on the samples subject: avoid the obvious choice of problem

samples (samples that trip codecs producing very nasty artifacts) with sharp
attacks or similar audio structures because their artifacts are easily detectable,
and therefore less fatiguing for your listeners. The reason is that such samples
are not representative of the whole scope of music. You’ll inevitably have to
feature some pop, rock, jazz, classical, etc. otherwise your test results will be
meaningless to everyone but the people that only listen to such hard-to-encode
music.

Each sample should be as homogenous as reasonably possible,

otherwise the listener may have difficulty rating a codec (e.g., in the first part
codec A was better, but in the last part, codec B was better).

This is a list of things that should be decided during the test discussion:

• Before you even start the test discussion, decide what it WILL be

testing: portable formats, high quality formats, popular formats,
formats on sale at online stores, formats for dial-up streaming... That
will ease the choice of codecs immensely.

• Codecs to be tested, bitrate and settings
• Amount of samples, and samples to be tested.
• Test duration (at least 10 days, and no more than a month)
• CBR or VBR (check the Can of Worms section for a lengthy

discussion on this)
• How results with ranked reference will be treated (again, look at the

Can of Worms)
• If the test warrants encryption (requires ABC/hr Java) or not

 8

Preparing the sample packages

Once all the test details have been ironed out, it’s time to start the hard

work. Announce what you have decided for your test. That will be a sort of ”soft-
freeze” – you’ll only change those decisions for very good reasons. Then pick
up the samples you chose, and encode them using the selected encoders with
the selected settings at the selected bitrates. Formats that provide an open
source command line decoder (MP3, Vorbis, AAC/HE AAC and Musepack) can
be distributed as-is. This saves a lot of bandwidth when distributing the sample
packages. Formats with no open source command line decoder (WMA,
ATRAC3, MP3pro and Real Audio) must be pre-decoded by you and losslessly
compressed with FLAC or WavPack.

Once all samples have been processed, create a folder structure for

them in order to avoid a mess. This is the structure I use:

fig. 2: Folder structure

abchr.jar, the readmes and test configuration files go in the root (ABC-

HR) folder. .\bin contains the apps to decode and decompress the samples, as
well as batch files to make the operation as painless as possible at the tester’s
side. .\licenses is the place for legalese documents that should be distributed
with ABC/hr, and .\SampleXX is where the encoded files and reference related
to each sample are located.

I recommend you name the reference file “samplefile.wav”, and the

encoded files “samplefile1.wav”, “samplefile2.wav”, etc. It will make things
easier later on.

Once the files have been distributed among the SampleXX folders, zip

each one of these folders from the parent directory, to make sure the relative
path is included inside the .zip. This makes things easier to test participants.
You should end up with several SampleXX.zip files, and when one of these files
is decompressed at a folder, it creates a subfolder ./SampleXX containing the
encoded files and the reference.

 9

Then, work on the batch files. Create a starting .bat in the .\bin folder

where each encoded file in the folder ..\Sample01 is processed with its
respective decoder/decompressor (which should also be located at the bin
folder) so that in the end of the processing you have only the .wavs that will be
loaded into ABC/hr.

Once you have one batch file tested and ready, create the other files

from that one, only caring about replacing the file name and folder location.

With all the batch files done, run them all. This is to test them, and also to

create the WAVs that will be used in the next step – creating the config files for
ABC/hr Java.

 10

Creating the config files
and finishing packaging

ABC/hr-Java2 makes everything easy for you. Creating config files is as

simple as 1-2-3.

fig. 3: Test setup screen

1. Define a name for your listening test
2. Select the reference in the “Original Sample” box
3. Select the samples to be tested in the “Test samples” box
4. Add 1000 ms to the “Additional offset” box (explanation later)
5. Hit the “Calculate Offsets” button
6. Hit the “Calculate Gain” button
7. Select “Add verification hashes” for further security
8. If you want to use encryption, mark the checkbox and either create a

new encryption key, or select one you already created
9. Save the test config

2 http://www.rarewares.org/others.html

 11

If you want, you can also use “Custom labels for rating scale” to use
labels other than “5.0 = Imperceptible” to “1.0 = Very annoying”. With most test
cases, it’s unnecessary.

The “Additional offset” setting increases the playback start point in each

sample. As explained by Gabriel Bouvigne, LAME developer:
“This is not because of problems in codecs, but to allow a realistic

behavior. With real encoding, encoders might be adapting themselves to
content. In real tracks, this adaptation can be progressively done as the track is
starting, thus the beginning of a extract from a track is not representative of the
encoding of this part inside the full length sample.”

Create a config file for each sample set following the above sequence

and save it to the root folder next to abchr.jar.

If your test doesn’t require encryption, you can save your test configs in

.txt format, so that they can be used in ff123’s ABC/hr comparer. Keep in mind
though that it won’t apply gain correction.

Once you finish creating the config files (and test them one by one!),

create a readme file for your test. It should contain simple instructions on how to
take the test, links to the sample packages, the expected deadline, information
about anonymity and information on how to contact you.

After you finish the readme, zip together: abchr.jar and related .jars, the

config files, the readme, the .\bin folder including all .bat files and decoding/
decompressing binaries, and the licenses folder to make lawyers happy. Upload
this package and the samples packages, and get ready to start your test...

 12

Starting the test

First, create a web page inviting people to participate in your test. Explain

the motivations that led you to create this test, the codecs and settings being
tested, and when the test is expected to end. Link to your starter packages (the
.zips containing abchr.jar, the readme, the configs, etc.).

After you double-check everything to make sure it’s working (it might be a

good idea to upload everything one day before the test officially starts and ask a
few friends to take the test, following the steps you laid out. This helps spot
flaws, if any), prepare an announcement text to be copy-pasted at forums, news
sites, and so on. Here is a list of places you should consider announcing your
test at:

• Hydrogenaudio3, of course
• rec.audio.opinion4 Usenet group (only if you have thick skin)
• Doom95 forum
• audiocoding.com6
• rarewares.org7
• Listening test mailing list8 (discuss this with the author beforehand)
• Slashdot9 (but disregard the clueless replies. People there once

wrote I should test FLAC’s quality because it is free and open)

With the test announced, sit back and wait for people’s results to start
flowing in (and pray that you didn't commit any horrible mistake that will force
you to call the test off while it is going on. It happened once to me).

3 http://www.hydrogenaudio.org
4 http://groups.google.com/group/rec.audio.opinion
5 http://forum.doom9.org
6 http://www.audiocoding.com/modules/newbb/
7 http://www.rarewares.org
8 http://www.rjamorim.com/test/newsletter.html
9 http://slashdot.org

 13

Preparing the results

As you start approaching the deadline, gather the results you already

received and see if they are enough to come up with statistically valid rankings
(no less than 10 results per sample). If they aren’t enough, you can consider
either postponing the deadline or calling it a day. Hopefully, if you did a good job
convincing people that participating in your test will help improve World peace
and find a cure for AIDS, that won’t be a problem, so let’s see what to do with all
those results.

Start with sorting them by sample. Create a folder for each sample set,

and place the respective results in there.

Several people name their result files simply “resultXX.erf”. To avoid file

name conflicts, use ABC-HR Java’s result processor which automatically
detects if the test participant used the “Show name in results file” setting and
uses it for file naming. If he didn’t use it, you should name the file something like
“anonXX-resultXX.xml” to clarify that this tester preferred to remain anonymous.

This is indeed a very boring process, and you’ll sooner or later find ways

to make it easier and slightly more automatic. Hopefully sooner than later...

With the test finished and all result files in their respective places, go for

the next step: putting the results together, while screening for ranked
references.

In my first tests, this was a very painful process that involved using a

hackish program in each single folder to create tables with the results for each
participant arranged in lines, and codecs sorted in columns. Some results had
to be screened individually to make sure the listener did or didn’t rank
references. All in all, it took a few hours.

Now, it takes about 10 seconds, thanks to Mr. Thomas Schumm (Phong).

He created a breathtaking little Python script called Chunky10, that goes

through all your results subfolders gathering data, screening them for ranked
references and successful or unsuccessful ABX tests, and outputs nice tables
that are ready to be fed into the statistical analyzer. After you finish running
Chunky, you can already know with some confidence who won and who lost the
test. From now on, it’s only eye-candy and precision.

To run Chunky, create a text file (codecs.txt) linking each codec to the

number used in the filenames, so that it looks like:

10 http://www.phong.org/chunky/

 14

http://www.phong.org/chunky/

 1, Vorbis
2, AAC
3, Lame
...

Don’t use any spaces in the codec names, or it will break the statistical
analyzer later on.

Then, run Chunky from the command prompt with a line similar to:

in the parent folder where the results are sorted in subfolders.

chunky.exe --codec-file="path\to\codecs.txt" -n --
ratings=results --warn -p 0.05

If everything goes well, you’ll see on the command prompt a list of results

with ranked references that didn’t reach a minimum ABX pval, and in the
directory where you ran chunky from there’ll be several text files “resultsXX.txt”
(that directory MUST be empty before you run chunky, except for the subfolders
that should ONLY contain the decrypted results). If you look into results.txt, the
last two lines should look like:

% Codec averages:
% 4.59 4.46 4.18 4.26 3.73 3.98

Those are your final results. The only thing missing from them is the error

margin, that will be calculated now.

To calculate error margins, you must use ff123’s statistical analysis tool11

from the command prompt. Run it as:

and it’ll print to screen the analysis done on that results table. If you want
Friedman to save the analysis to a file, use output redirection:

friedman –tp resultsXX.txt

friedman –tp resultsXX.txt > analysisXX.txt

 Run the analysis tool for each result file. When you have all done –

including the final analysis on results.txt – move on to the next step: creating the
plots.

11 http://ff123.net/friedman/stats.html

 15

Making Plots

 I don't think there is much point explaining step-by-step how to create

charts in Excel/OpenOffice Calc/Grapher/etc., specially since I'm not even a
good teacher at that. You're better off researching the documentation that
comes with each of these tools. Just some generic hints:

• In Microsoft Excel, the plot type used is “Stock – High-Low-Close”, which is

called “Stock Chart 1” on OpenOffice 1.x.
• The error margins are the HSD value output by Friendman. Use half HSD for

the upper error margin, and half for the lower.
• Don't forget to include codec names, ranking values and amount of

participants in the plots.
• It can be a good idea to create a zoomed version of the final plot, focusing

only on the score range of the winning codecs.

 16

Finishing at Last

 After you get all your plots done, create a web page featuring them

alongside comments on who won, who lost and why (if you manage to detect
that).

 Include information such as what happened during the test, what justified
your choices for this or that encoder, how much codecs improved since the last
test... the surprises and the let-downs.

 Upload everything, alongside with the result files (so that people can
reproduce your findings or assemble them in alternative ways) and announce
the results at the same places you announced the test itself some days before.

 Congratulations! You completed your first listening test. :-)
 Now start getting prepared for the next one...

 17

Opening the Cans of Worms

In this section, we discuss at length the most controversial and polemic

subjects that always surface while a test is being discussed. It will hopefully give
you ammunition to fight clueless critics and the like.

 18

High bitrate testing

rjamorim: There's some inverse proportionality there
rjamorim: At low bitrates nobody is interested,

but the results are easy to obtain
rjamorim: At high bitrates everyone is interested,

but you practically can't obtain usable results
ff123: s/bitrates/beauty and s/results/fucks

It’s unavoidable: You will have someone asking you to conduct a high

bitrate test – something above 160kbps. Usually more than once. The usual
argument is that most people (the ones that care about listening tests, of
course) use bitrates in the 190-200kbps range (LAME preset standard,
Musepack --standard, Vorbis q6...) therefore mid-low bitrates listening tests are
meaningless to them.

To these people, I offer this canned response:

Why a listening test at high bitrates (~192kbps) wouldn't work:

1) Most samples would have already reached transparency at that bitrate. And
choosing only problem samples would make the test less significant since you
wouldn't be testing a broad range of musical styles.

2) Only a handful of golden ears would be able to reliably ABX the samples,
and even after ABXing they would hardly give scores lower than 4.5

3) Since most scores would be around 4.5 and higher, the error margins would
be big enough to make all codecs tied. To avoid that, you would need to have
hundreds of participants, in an attempt to bring the error margins down.

4) You would have a hard time finding hundreds of golden ears, and even more
so, hundreds of golden ears willing to participate, because the test would be
very fatiguing and frustrating due to the difficulty of ABXing.

5) At the end, even if you managed to bring the error margins down, the codecs
would be ranked so close that you wouldn't be able to produce a decent
conclusion. All codecs would seem (or be) tied to each other.

 19

VBR versus CBR

This is another undying issue that will haunt most of your tests. Some

people will be polarized asking for VBR, others will beg you for CBR.

The argument used by people asking for VBR is that it’s what everybody

is (or should be) using, given that it’s the most efficient way of distributing data
across the audio stream. Easy-to-encode data gets fewer bits, hard-to-encode
data gets more bits, and quality ends up being more or less constant.

The CBR pushers, on the other hand, argue that CBR is the most fair

method to compare codecs. When you encode tracks in VBR, unavoidably
some samples will get more bits than the test target bitrate, others will get less.
Since codecs’ methods of allocating bits vary amongst themselves, in the final
bitrate sum, one codec will end up using higher bitrates than the competition.
That’s not very fair.

But then again, codecs like Musepack don’t offer a CBR mode at all.

Vorbis is also known for performing much better in VBR mode than CBR mode.
Other codecs, like Real Audio and Atrac3 are CBR-only. And WMA has an
unreliable VBR mode that makes bitrates fluctuate insanely among samples.
Therefore, why punish codecs that implement a good VBR mode (LAME,
Vorbis), forcing them to the lowest-common-denominator of CBR?

So where to settle?

I believe the best compromise is to use VBR whenever possible, and

CBR only when needed. To shield yourself from bitrate variation criticism, test
the VBR encoder with several quality settings over several CDs of different
musical styles. Settle with the setting that comes closer to the target bitrate over
the collection of encoded files. Therefore, that would be the setting that comes
closer to the bitrate desired in everyday usage, even though it might vary in
small 30-second samples.

Avoid the temptation of encoding each sample at several VBR qualities

until it comes closest to the target bitrate. Even though that would create some
nice and fair bitrate distribution, that’s completely unrelated to what people do at
home – no one encodes his own CDs several times until the bitrates come
close to a target. And what’s the use of a listening test that bears no semblance
to reality?

The samples should be about the same duration. The idea is that the

average bitrate of the sample set depends on the individual sample durations as
well as their difficulty -- the longer the sample, the more it affects the overall
bitrate.

For a VBR codec, the distribution of bitrates in the small sample set (eg.,

 20

20 samples), supposing you draw a histogram of it, should resemble the
distribution of a large sample set chosen from a wide variety of music. That
should give you more arguments to counter fairness issues.

 21

Dealing with ranked references

The higher the bitrates you test, the more often you’ll receive result files

with ranked references. By ranked references, I mean that the listener gave a
score to the reference file instead of the encoded sample. Obviously, that
shouldn’t happen (although in some cases it is even justifiable, as we’ll see
later). What to do with those results?

You have two choices. If you already have plenty of results, you can just

delete them and move on, using only the unranked results. But if you are indeed
conducting a mid-high bitrate listening test, odds are that you don’t have plenty
of results. In that case, my suggestion is that you screen these results before
discarding them.

You should check them for ABX results. ABC/hr Java saves inside the

results files if the listener did an ABX test, how many trials he took, and what
was the outcome. If he got a pval smaller than 0.05, that means he could
differentiate the reference from a sample with great confidence, and the error in
sliding can probably be credited to fatigue or lack of attention. In that case, the
score can be safely computed.

Another explanation to the “error” is that the sample really sounded better

than the reference. Although that sounds impossible at first analysis, in some
cases it might happen. Consider this: you are testing an old recording that has
lots of high frequency hissing. The reference file will keep all the annoying
hissing there, while a codec will probably lowpass most of it during encoding. In
that case, the encoded file will probably sound better than the reference.

On the other hand, if there are no ABX test results, you should just

discard the ranked results, as, for all that we know, it might be that the listener
just moved sliders randomly.

 22

Hints
A substantial part of this section

was contributed by ff123

• Sample01
A note on listener psychology: they will tend to download and listen to

sample01 first, and then decide whether they want to continue based on their
experience on that first sample. Ideally, there would be some sort of
randomizer which assigns different music to each of the samples
dynamically, but that would require some way to sort things out in the end.
Barring that, you should try to make Sample01 as friendly as possible.

• Ask the devs
Whenever possible, ask the developers of each codec being tested

what settings you should be using for that test, and what codec version (if
there is more than one). It'll be an awesome shield against criticism: people
won't be able to complain that you used a wrong setting or version, as the
developer surely knows better than pretty much anyone out there.

Of course you won't likely be able to get a hold of WMA or ATRAC
developers, but there's a very good chance you'll be able to swap some
ideas with Vorbis, Nero AAC and LAME developers... if you are interested in
conducting a listening test, contact the author of this document so that he can
point you to the right people (check the annexes)

• Keep the ball rolling
Try to keep the discussion thread going during the test to keep interest

up, and to avoid people forgetting about it.
• Read the documentation

Study carefully the ABC/hr specification document from ITU. Try to
abide to it as much as possible. Some parts are simply undoable on an
informal listening test with $0 budget, like considerations on testing
equipment and environment. So focus on the “cheaper” parts. Once you
understand enough about the methodology, you'll be able to easily dismiss
criticisms to it: few people can claim they know better than the ITU about
blind audio tests.

• Listener training
It’s a good idea to provide some instructions to your prospective

participants on how to properly participate in a listening test. One solution is
linking to ff123’s very complete training page:

http://ff123.net/64test/practice.html

 23

http://ff123.net/64test/practice.html

Annex 1: Model test readme

<test name> public listening test =readme=

Be welcome, and thank-you very much for taking part in this
listening test. Your results will be very valuable.

Here are the instructions:
1. Decompress the ABC-HR_bin.zip package to it's own folder

2. Download one (or more) of the sample packages. Location of the
 packages is further down.

3. Place the sample package (SampleXX.zip) in the same folder as
 ABC/hr and uncompress it. Make sure to keep directory
 formatting intact, or the config files won't work.
 For an idea on how the folders should look like (in case you
 downloaded all the packages), check folder-setup.png

4. If you use windows:
 Go to the bin/ directory and run SampleXX.bat (XX being the
 number of the sample package you want to prepare for testing)
 Wait until the prompt screen goes off.
 If you use Linux
 Same as above, but to run the .bat file, use Wine with the command
 $ wine cmd SampleXX.bat

5. **You need the Sun Java Runtime v1.4 or superior to run abchr!
 If you don't have Java, download it from here:
 http://java.com/java/download/index.jsp

 **You need to use the ABC/hr java version provided in the
 abc-hr_bin.zip package together with this readme. Older versions
 aren't compatible with the config files format.

 If you use Windows:
 Double-click abchr.jar
 If you use *nix:
 From the shell run "java -jar abchr.jar" without quotes

 Once ABC/hr is open, do File -> Open test file. Then, load the
 file configXX.ecf. Again, XX is the number of the test you want to
 take. Make sure you have run the .bat respective to that package
 before.

6. Take the test. If you want info on how to properly do that,
 check ff123's page:

 24

http://java.com/java/download/index.jsp

 http://ff123.net/64test/practice.html

7. After you finish the test, save the results, zip them together
 and mail the .zip to <test conductor e-mail> . The test ends on
 <date>. No results will be accepted after that date, unless
 the test is extended. Eventual extensions will be announced at
 the test page (<URL to test page>)

 You don't need to test all samples to participate. Even one single
 result is already very helpful. Of course, the more you test, the
 better for the final results' significance.

 All results and comments I receive will be published. If you
 want to be associated with your results, please enter your (nick)name
 in the "Show name in results file" field in ABC/hr (check the
 checkbox next to the text to activate the field). Otherwise, your
 results will be annonymous.

These are the sample packages:

If you use BitTorrent, downloading through it and helping seed
would be of much help to me. A recommended BitTorrent client is
Azureus: http://azureus.sourceforge.net/
<links to the torrents>

If you prefer standard http downloads:

<links to the sample packages>

The average package size is <size>

Again, thank-you very much;

<conductor’s name>

 25

http://ff123.net/64test/practice.html
http://azureus.sourceforge.net/

